Importance of robust nanomaterial test substance characterization as a necessary prerequisite for evaluating the results of in vivo nanotoxicity studies

David B. Warheit, PhD.
DuPont Haskell Global Centers
Newark, Delaware
Personal Care Products Council
Safety Workshop – Newark, NJ
October 29, 2014

Outline
• Definitions of Nanoparticles – scientific vs. regulatory
• Why is NM physicochemical characterization important?
• What are some recommended minimal essential physico-chemical particle characteristics before undertaking a nanotoxicity study?
• Relating physchem issues to pulmonary toxicity
• 3 examples using pulmonary bioassay methodologies as a measure of lung toxicity - hazard assessment
• Pulmonary bioassay studies in rats with –
 1) Fine/ultrafine (Nano) TiO₂ particle types;
 2) Fine and Nano-sized zinc oxide particulates;
 3) Inhalation of carbon nanofibers

What are the issues with Nanogrouping/ Nanocategorization and why are they important?

Definitions- Particle Size

• Nano = Ultrafine = < 100 nm
• Fine = 100 nm - 3 μm

• An ultrafine particle is defined as a particle of average primary size of roughly 100 nm and exhibits a property that is uniquely different than that of its bulk counterpart.
European Commission Definition
October 18, 2011- Nanomaterial

- Natural, incidental or manufactured nanomaterials;
- Particles in an unbound state, an aggregate or agglomerate;
- Where 50% of particles based on a number size distribution, have one or more external dimensions in the size range 1 nm to 100 nm.

Category 1: size > 500 nm
Category 2: 500 nm > size > 100 nm
A nanospecific risk assessment should be undertaken if the characterisation demonstrates that >0.15% of the number size distribution is <100 nm.
Category 3: 100 nm > size > 1 nm
The material is considered a nanomaterial and nanospecific risk assessment has to be performed. A VSSA above the threshold (e.g. >60 m2/cm3) may be used as an additional qualifier to indicate a size below 100 nm.

Why is Material Characterization Important?
- You have to know what you working with – otherwise the results of studies are meaningless.
- Confirmation/validation of results by others with any material is important – Others (as well as you) cannot repeat studies and obtain results – without knowing that one is using the same nanomaterial-type.
- (Manuscripts submitted to Toxicological Sciences & other journals will not be processed/reviewed.)
Particle Scale

Nanoparticles

Ultrafine

Respirable PM 2.5

PM 10

1 nm

10 nm

100 nm

1 μm

10 μm

Unique structures and morphologies

Carbon Nanotubes
Studies to Assess Pulmonary Hazards to Nanoparticulates

• Key Features of Nanotoxicology Studies

 1) Rigorous physicochemical characterization of particle-types
 2) Dose response characteristics
 3) Time course experimental protocol
 4) Utilization of benchmark particulate controls (positive and/or negative)
Ultrafine TiO$_2$
Studies

Pulmonary Instillation Studies with Nanoscale TiO$_2$ Rods and Dots in Rats: Toxicity is not Dependent upon Particle Size and Surface Area

Warheit et al., Tox Sci, 91: 227-236, 2006

Protocol for Nanoscale TiO$_2$ Pulmonary Bioassay Study

- Exposure Groups
 - PBS (control)
 - Particulate Types (1 and 5 mg/kg)
 - Fine-sized TiO$_2$ particles
 - Nanoscale TiO$_2$ rods
 - Nanoscale TiO$_2$ dots
 - Quartz Particles (positive control)

- Instillation Exposure
- Postexposure Evaluation via BAL and Lung Tissue

- 24 hr
- 1 wk
- 1 mo
- 3 mo
Characterization of Nanoscale TiO\textsubscript{2} Particles

<table>
<thead>
<tr>
<th>XRD particle size</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fine TiO\textsubscript{2} rutile d\textsubscript{50} = 300 nm</td>
<td>6 m2/g</td>
</tr>
<tr>
<td>• TiO\textsubscript{2} Nanorods anatase</td>
<td>26.5 m2/g</td>
</tr>
<tr>
<td>• length = 90-233 nm</td>
<td></td>
</tr>
<tr>
<td>• width = 20-35 nm</td>
<td></td>
</tr>
<tr>
<td>• TiO\textsubscript{2} Nanodots anatase d\textsubscript{50} = 6 nm</td>
<td>169.4 m2/g</td>
</tr>
<tr>
<td>• Min-U-Sil αQ d\textsubscript{50} = 1.3 µm</td>
<td>4.0 m2/g</td>
</tr>
</tbody>
</table>

RESULTS

Biomarkers = Pulmonary Inflammation

Collaborative Studies with Rice University: TiO\textsubscript{2}

Pigmentary & Nano-TiO\textsubscript{2} are not different
Cytocentrifuge Prep of BALF Cells - Rat Exposed to Nanoscale TiO$_2$ Dots – 24 hr pe

Cytocentrifuge Prep of BALF-derived Cells From a Rat Exposed to Nanoscale TiO$_2$ Dots – 1 wk pe

Pulmonary Toxicity Study in Rats with Three Forms of ultrafine-TiO$_2$ Particles: Differential Responses related to Surface Properties

Warheit et al., Toxicology 230: 90-104, 2007
Characterization of Ultrafine TiO₂ Particle-types - 1

Characterization of Ultrafine TiO₂ Particle-types - 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Crystalline phase</th>
<th>Median size and width distribution (nm) in water*</th>
<th>Surface area (m²/g)</th>
<th>pH</th>
<th>Chemical reactivity in water* in PBS</th>
<th>deionized water</th>
<th>PBS</th>
<th>delta b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-1</td>
<td>rutile</td>
<td>382.0 ± 36%</td>
<td>2667.2 ± 35%</td>
<td>5.8</td>
<td>7.49</td>
<td>6.75</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>uf-1</td>
<td>rutile</td>
<td>136.0 ± 35%</td>
<td>2144.3 ± 45%</td>
<td>18.2</td>
<td>5.64</td>
<td>6.78</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>uf-2</td>
<td>rutile</td>
<td>149.4 ± 50%</td>
<td>2990.7 ± 31%</td>
<td>35.7</td>
<td>7.14</td>
<td>6.78</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>uf-3</td>
<td>80/20 anatase/rutile</td>
<td>129.4 ± 44%</td>
<td>2691.7 ± 31%</td>
<td>53.0</td>
<td>3.28</td>
<td>6.70</td>
<td>23.8</td>
<td></td>
</tr>
</tbody>
</table>

Protocol for ultrafine TiO₂ Pulmonary Bioassay Study

- Exposure Groups
 - PBS (vehicle control)
 - Particle-types (1 and 5 mg/kg)
 - rutile-types uf-1 TiO₂
 - rutile-type uf-2 TiO₂
 - anatase/rutile-type uf-3 TiO₂
 - rutile-type F-1 fine TiO₂ (negative control)
 - α-Quartz particles (positive control)

- Instillation Exposure
- Postexposure Evaluation via BAL and Lung Tissue
RESULTS

Biomarkers
Pulmonary Inflammation
Pulmonary Cytotoxicity
Lung cell Proliferation
Lung Morphology

Pulmonary Inflammation

BAL Fluid LDH Values (cytotoxicity)
BAL Fluid Micro Protein Values (permeability)

![Graph showing BAL Fluid MTP Values in Rats exposed to Fine or Ultrafine-TiO₂ Particulates](image)

Pulmonary Cell Proliferation Rates

![Graph showing Lung Parenchymal Cell Proliferation rates of rats exposed to Fine or Ultrafine-TiO₂ Particulates](image)

Lung Sections of Rats exposed to uf-1 (A); uf-2 (B); or F-1 (C)- 3 months pe

![Images of lung sections](image)
Lung Section of Rat exposed to uf-3 @ 3 months postexposure

Lung Section of Rat exposed to Quartz particles @ 3 months postexposure

Summary - Important Particle Characteristics

- Primary particle size
- Particle shape (SEM)
- Surface area
- Surface charge
- Composition - e.g., crystalline vs. amorphous, crystal structures
- Surface Coatings
- Aggregation status
- **Particle surface reactivity**
Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures?

TEM - Fine Zinc Oxide Particles

TEM – “Nano” Zinc Oxide Particles
Table 1. Physicochemical Characteristics of Fine and Nano ZnO Particles

Particle characterization in the wet state

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Avg. Particle Size in soln. (nm) DLS</th>
<th>Surface charge (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano ZnO water</td>
<td>168 ± 16%</td>
<td>-34.5</td>
</tr>
<tr>
<td>PBS</td>
<td>314 ± 31%</td>
<td>-28.5</td>
</tr>
<tr>
<td>Fine ZnO water</td>
<td>243 ± 19%</td>
<td>-55.76</td>
</tr>
<tr>
<td>PBS</td>
<td>319 ± 35%</td>
<td>-14.9</td>
</tr>
</tbody>
</table>

Particle characterization in the dry state

<table>
<thead>
<tr>
<th>Report primary Particle size (nm) by supplier</th>
<th>Surface area (m²/g)</th>
<th>Density (g/ml)</th>
<th>Calculated size in dry state (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nano ZnO 50 – 70</td>
<td>12.1</td>
<td>5.6</td>
<td>90</td>
</tr>
<tr>
<td>Fine ZnO <1000</td>
<td>9.6</td>
<td>5.6</td>
<td>111</td>
</tr>
</tbody>
</table>

Mean Particle Size Determinations in the ZnO Inhalation Studies

MMAD (cascade impactor analyses)

Fine ZnO 25 mg/m³	3.3 μm
Fine ZnO 50 mg/m³	3.2 μm
Nano ZnO 25 mg/m³	2.8 μm
Nano ZnO 50 mg/m³	2.6 μm

Ninety-Day Inhalation Toxicity Study with Vapor Grown Carbon Nanofibers in Rats

MP DeLorme, Y Muro, T Arai, DA Banas, SR Frame, KL Reed, and DB Warheit

Question: What physicochemical features distinguish the pulmonary toxicity of carbon nanofibers from carbon nanotubes or asbestos fibers?

1. Specific surface area aspects (e.g., 250 m²/g vs. 13.8 m²/g)
2. Catalyst metals (Fe or other metals → ROS formation – cell injury)
3. Aspect ratio (length / diameter)
4. Fibre paradigm issues [e.g., dose, dimension, durability]
Schematic of Experimental Protocol for Carbon Fiber 90-Day Inhalation Study

- 90 Day Exposure Groups (mg/m^3)
 - 0
 - 0.5
 - 2.5
 - 25
- 3 Month P.E. Recovery Period (groups)
 - 0
 - 25

- Traditional tox endpoints
- Clin Path
- Histopath
- BALF Analysis
- Cell Proliferation

90-Day Inhalation Exposure Study with Carbon Nanofibers

- Histopathology
- BAL fluid endpoints
 - Total cell counts and cellular differentials
 - BAL Fluid LDH (cytotoxicity)
 - BAL Fluid Microprotein (permeability)
 - BAL Fluid Alkaline Phosphatase
 (Type II cell cytotoxicity)
- Cell Proliferation studies – BrdU
 - Terminal bronchiolar (Airway)
 - Lung parenchymal cell
 - Subpleural/(Mesothelial)

90-Day Inhalation Exposure Study with Carbon Nanofibers – VGCF®-H characterization

Chemical composition
- C > 99.5%; O = 0.03%; Fe = 0.003 (ICP-AES)
- Purity = 99.7%
- Surface area = 13.8 m^2/g (BET)
- Median lengths = 5.8 μm; diameters = 158 nm
- Fiber counts (NIOSH 7400 method)

<table>
<thead>
<tr>
<th>MMAD (μm)</th>
<th>Fiber counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9 (3.1)</td>
<td>4.9 ± 3.5</td>
</tr>
<tr>
<td>3.2 (2.1)</td>
<td>56 ± 31</td>
</tr>
<tr>
<td>3.3 (2.0)</td>
<td>252 ± 143</td>
</tr>
</tbody>
</table>
Aerosol sample taken from filter in high exposure conc. chamber - TEM

Aerosolized VGCF®-H nanofibers counts

Percent Neutrophils in BAL Fluids of Rats exposed to VGCF-H Inhalation Exposed Rats (Main)

Exposure Levels

PMN’s

% PMNs

Males Females

* #
Cytocentrifuge cellular preparation
25 mg/m³ (BALF cells)

BAL Fluid LDH Values in VGCF-H Inhalation Exposed Rats

Exposure Levels:
- 0 mg/m³
- 0.5 mg/m³
- 2.5 mg/m³
- 25 mg/m³

Terminal Bronchiolar Epithelial Cell Proliferation rates of Rats exposed to VGCF-H

Exposure Groups:
- 0 mg/m³
- 0.5 mg/m³
- 2.5 mg/m³
- 25 mg/m³
Lung tissue from a rat exposed to 25 mg/m³ VGCF®-H particulates (#410)

VGCF®-H study results
- Small numbers of extrapulmonary fibers observed in organs—no adverse effects
- **NOAEL = 0.54 mg/m³ (4.9 f/cc)**
- **2.5 mg/m³** – (histopathology) minimal inflammation of terminal bronchiole and alveolar ducts in male and female rats. No CP or BALF.
- **25 mg/m³** – (histopathology) slight inflammation of the TB and AD regions in male and female.
- ↑ in female lung weights
 - ↑ BALF endpoints – PMNs, LDH, MTP, AlkPhos
 - ↑ Cell Proliferation – TB, Lung parenchyma
 - subpleural/(mesothelial) [↑ subpleural–No meso]
VGCF™-H carbon nanofibers do not have toxicity effects similar to carbon nanotubes or asbestos fibers

• Likely due to differences in physicochemical characteristics –
• Low surface area metrics
• Reduced length fibers (easily phagocytized by alveolar macrophages in the lung)
• Reduced catalyst metal content
• Does not meet the fibre paradigm criteria

Summary - Important Particle Characteristics

• Primary particle size
• Particle shape (SEM)
• Surface area
• Surface charge
• Composition - e.g., crystalline vs. amorphous – crystal structures
• Surface Coatings
• Aggregation status in testing media
• Particle surface reactivity

Nanocategorization

• What is Nanogrouping/Nanocategorization and why is it important?
Human Health Breakout Group 2

OECD Expert Meeting on Categorization of Manufactured Nanomaterials

18 September 2014

Session Co-Chairs:
- Dr. David Warheit (BIAC/DuPont)
- Dr. Phil Sayre (EPA/OPPT)
Rapporteur: Dr. Agnes Oomen (RIVM/Netherlands)

Overview

- Charge to Health Session 2, & Overview of Structure
- Review of Health Session 1: Structure for ENM Categories
- Specific Questions to be Addressed
- Possible Approaches to Initiate Discussions

Structure for ENM Categories:
Physicochemical Groupings from Thought Starter

- Inorganic: Carbon Based Materials
 - Fullerenes other than CNTs
 - Fullerenes – with or without modification of functional groups
 - Carbon nanotubes
 - Multi-walled Carbon nanotubes
 - Number of walls - Functionalized or unfunctionalized
 - Single-walled Carbon nanotubes
 - Functionalized - Complex arrays of carbon nanotubes
 - Carbon Nanofibers
 - Graphite and graphitic sheets
 - Carbon black derivatives
- Metalloids
 - Coating
 - Coated/Treated - Uncoated/Untreated
- Metalloid Oxides and other metalloid compounds
 - Coating - Coated/Treated - Uncoated/Untreated
- Metals
 - Coating
 - Coated/Treated - Uncoated/Untreated
- Metal oxides and other metal compounds
 - Coating - Coated/Treated - Uncoated/Untreated - Solubility
- Quantum dots
- Organic Compounds
Physicochemical Factors, in Context of Inhalation Toxicity

Inhalation of MNs

Reference: http://www.ec.gc.ca/scitech...

Further Approaches to Initiate Discussion on Pulmonary Toxicity Categories

• Mode of Action Considerations
 • Long-term lung inflammation
 • Fibrosis
 • Other MOAs and/or Biokinetics Anchors

• Targeted Testing within a Category:
 • Use short-term study results, anchored by longer-term * in vivo studies, to estimate toxicity of new MN within the Category

• Focus on an Individual data-rich Group of MNs, and Subcategories:
 • Toxicity Outcomes, based on:
 • varied Metal Oxide crystallinities
 • varied Carbon allotrope forms

Characterization of Ultrafine TiO₂ Particle-types - 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Crystalline phase</th>
<th>Median size and width distribution (nm)</th>
<th>Surface area (m²/g)</th>
<th>pH</th>
<th>Chemical reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>in water</td>
<td>in PBS</td>
<td>deionized water</td>
<td>in PBS</td>
</tr>
<tr>
<td>F-1</td>
<td>rutile</td>
<td>382.0 ± 36%</td>
<td>2667.2 ± 35%</td>
<td>5.8</td>
<td>7.49</td>
</tr>
<tr>
<td>uf-1</td>
<td>rutile</td>
<td>136.0 ± 35%</td>
<td>2144.3 ± 45%</td>
<td>18.2</td>
<td>5.64</td>
</tr>
<tr>
<td>uf-2</td>
<td>rutile</td>
<td>149.4 ± 50%</td>
<td>2890.7 ± 31%</td>
<td>35.7</td>
<td>7.14</td>
</tr>
<tr>
<td>uf-3</td>
<td>80/20 anatase/</td>
<td>129.4 ± 44%</td>
<td>2691.7 ± 31%</td>
<td>53.0</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>rutile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pulmonary Inflammation

Differences in Inhalation Toxicity
Effects for various Carbon Allotropes

- Subchronic inhalation data (several sources):
 - MWCNT \(\times 2 \) \(\rightarrow \) NOAEL = < 0.1 mg/m\(^3\)
 - CNF \(\rightarrow \) NOAEL = 0.5 – 2.5 mg/m\(^3\)
 - Carbon black \(\rightarrow \) NOAEL = 1.0 mg/m\(^3\)

- 5-day Inhalation Screen (Ma-Hock, et al., 2013):
 - MWCNT \(\rightarrow \) NOAEL < 0.5 mg/m\(^3\)
 - Graphene \(\rightarrow \) NOAEL 2.5 mg/m\(^3\)
 - CB, or graphite nanoplatelets \(\rightarrow \) NOAEL = 10 mg/m\(^3\)